

Choosing a preventive treatment for migraine

Messoud Ashina, MD, PhD, DMSc, FEAN Professor of Neurology

The aim is to reduce the frequency, duration, or severity of migraine attacks *rather* than to cure the migraine

Who should be treated?

- 2–3 severe attacks *per month* in spite of:
 - optimal pharmacological acute treatment

EFNS Guidelines 2006 – prophylactic drug treatment when:

- quality of life, business duties or school attendance are severely impaired
- frequency of attacks per month is two or higher
- attacks do not respond to acute drug treatment
- frequent, very long or uncomfortable auras occur

When is prophylactic treatment a success?

- Frequency or intensity reduced by at least 50%
- Acceptable adverse effects
- Monitor with calendar

Which drugs to choose?

- Previous treatments
 - sufficient dose?
 - sufficient duration?
 - concomitant medication overuse?
- Consider comorbidity
 - e.g. depression, overweight, cardiac problems

Preventive treatments: present and future

Metoprolol 50-200 mg Propranolol 40-240 mg Bisoprolol 5-10 mg Lisinopril 20-40 mg Candesartan 16-32 mg

Topiramate 100 (200) mg Valproate 500-1800 mg

Flunarizine 5-10 mg Amitriptyline 10-100 mg Magnesium 360 mg Riboflavin 400 mg Pizotifen 1.5-3 mg

Botulinum toxin type A 155U Indication: Chronic migraine

Anti CGRP or its receptors monoclonal antibodies

Chronic Migraine: Topiramate and Botox

Baseline migraine days/month: topiramate, 15.5; placebo, 16.4.

Anti-CGRP Therapeutic Antibodies

CGRP antibodies

- Eptinezumab (ALD403)
- Galcanezumab (LY2951742)
- Fremanezumab (TEV-48125)

CGRP receptor blockers

• Erenumab (AMG 334)

Episodic	Phase 3 studies	Primary endpoint	1º EP timeline			
Erenumab	ARISE ¹		Weeks 9–12			
	STRIVE ²		Months 4-6			
Fremanezumab	HALO ³	Monthly migrains days	Months 1-3			
Galcanezumab	EVOLVE-1 ⁴	Monthly migraine days	Months 1-6			
	EVOLVE-2 ⁵		Months 1-6			
Eptinezumab	PROMISE-16		Months 1-3			
Chronic	Phase 3 studies	Primary endpoint	1º EP timeline			
Fremanezumab	HALO ⁷	Headache days (at least moderate severity)	Months 1–3			
Galcanezumab	REGAIN ⁹	NA on the bounding of the con-				
Eptinezumab	PROMISE-2 ¹⁰	Monthly migraine days				
Episodic and chronic	Phase 3 studies	Primary endpoint	1º EP timeline			

^{1.} Dodick DW et al. *Cephalalgia* 2018;38(6):1026-37; 2. Goadsby PJ et al. *N Engl J Med* 2017;377(22):2123-32; 3. Dodick DW et al. *JAMA* 2018;319(19):5–14; 4. Stauffer VL et al. *JAMA Neurol* 2018;75(9):1080-8; 5. Skljarevski V et al. *Cephalalgia* 2018;38(8):1442-54; 6. Ashina M et al. *Cephalalgia* 2020; 7. Silberstein SD et al. *N Engl J Med* 2017;377(22):2113-22; 8. Ferrari MD et al. *Lancet* 2019;394(10203):1030-40; 9. Detke HC et al. *Neurol* 2018;91(24):e2211-21; 10. Lipton RB et al. *Neurol* 2020

Response Rates in Phase 3 Randomized Trials of Monoclonal Antibodies against CGRP or Its Receptor for Prevention of Episodic Migraine

CGRP mAbs: Episodic Migraine Early Onset of Efficacy

There are no head-to-head trials; results cannot be compared because of different trial designs and patient populations

Fremanezumab

Bigal ME et al. Neurology 2016;87(1):41-48

Galcanezumab

Eptinezumab

Saper et al. Oral Presentation PO-01-194. Presented at IHC 2017 P=0.0167 P=0.0087 80 69 68 66 21% 54% 52% Patients (n) 20 Baseline Day 1 Baseline Day 1 Baseline Day 1 Placebo Eptinezumab 100 mg Eptinezumab 300 mg

Monoclonal Antibodies to CGRP or Its Receptor for Migraine Prevention

Oral rimegepant for preventive treatment of migraine: a phase 2/3, randomised, double-blind, placebo-controlled trial

	Rimegepant (n=348)		Placebo (n=347)		Least squares mean difference between groups (95% CI)	p value
	n	Point estimate (95% CI)	n	Point estimate (95% CI)		
Change in mean number of migraine days per month during weeks 9–12, days (primary efficacy outcome)†	348	-4·3 (-4·8 to -3·9)	347	-3.5 (-4.0 to -3.0)	-0.8 (-1.5 to -0.2)	0-0099
≥50% reduction in mean number of moderate or severe migraine days per month during weeks 9–12	171	49% (44 to 54)	144	41% (36 to 47)	8% (0 to 15)	0-044
Change in mean number of total migraine days per month during weeks 1–12, days†	348	-3·6 (-4·0 to -3·2)	347	-2·7 (-3·1 to -2·3)	-0.8 (-1.3 to -0.3)	0-0017
Rescue medication days per month during weeks 9–12, days†	348	3-7 (3-3 to 4-2)	347	4·0 (3·5 to 4·4)	-0.2 (-0.8 to 0.3)	0.39‡
Change in mean number of total migraine days per month during weeks 1–4, days†	348	-2·9 (-3·3 to -2·5)	347	-1.7 (-2.2 to -1.3)	-1·2 (-1·7 to -0·6)	<0.0001‡
Change in MSQ role function (restrictive domain score) at week 12†§	269	18-0 (15-5 to 20-6)	266	14·6 (12·1 to 17·1)	3.5 (0.2 to 6.7)	0-036‡
Change in MIDAS total score at week 12†§	269	-11·8 (-15·4 to -8·2)	266	-11·7 (-15·3 to -8·1)	-0·1 (-4·7 to 4·5)	0.96‡

MSQ=Migraine-Specific Quality-of-Life Questionnaire. MIDAS=Migraine Disability Assessment. *Evaluable participants had ≥14 days of electronic diary efficacy data (not necessarily consecutive) in the 4-week observation period and data for at least 1 month (4-week interval) in the 12-week double-blind treatment phase. To control the type I statistical error rate at 0·05, a preplanned hierarchical testing procedure was applied; endpoints are presented in the sequence in which they were evaluated. †Analysed using a generalised linear mixed-effects model with treatment group, preventive migraine medication use at randomisation, study month, and month-by-treatment group interaction as fixed effects and participant as random effect. ‡Nominal p value in hierarchical testing. §Analysis only included participants who completed the MIDAS or MSQ questionnaire within the prespecified efficacy analysis window (weeks 10-13).

Table 2: Efficacy outcomes assessed in the efficacy-evaluable population*

Preventive treatments: present and future

Metoprolol 50-200 mg Propranolol 40-240 mg Bisoprolol 5-10 mg Lisinopril 20-40 mg Candesartan 16-32 mg

Topiramate 100 (200) mg Valproate 500-1800 mg

Flunarizine 5-10 mg Amitriptyline 10-100 mg Magnesium 360 mg Riboflavin 400 mg Pizotifen 1.5-3 mg

Botulinum toxin type A 155U Indication: Chronic migraine

Anti CGRP or its receptors monoclonal antibodies

Erenumab Fremanezumab Galcanezumab Eptinezumab

Future treatment: Oral CGRP-receptor antagonists

Atogepant Rimegepant

Preventive Treatment of Migraine

Patient education and engagement

Acute and prophylactic treatment

Non-specific and migraine specific preventive medications